Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

	Б1.О.28 Физика плазмы
наименовани	е дисциплины (модуля) в соответствии с учебным планом
Направление подгот	овки / специальность
03.05.	02 Фундаментальная и прикладная физика
Направленность (пр	офиль)
03.05.	02 Фундаментальная и прикладная физика
Форма обучения	очная
Год набора	2022

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
к.ф-м.н., Доц	ент, Финников Константин Андреевич
-	лопжность инициалы фамилия

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Целью преподавания дисциплины является ознакомление студентов со статистической, кинетической и гидродинамической теорией в приложении к задачам ионизованной среды, с основными экспериментальными методами исследования плазмы; получение студентами квалификации в использовании термодинамических и кинетических соотношений для определения свойств ионизованной среды, в формулировке моделей сплошной среды для описания динамики плазмы в различных условиях.

1.2 Задачи изучения дисциплины

Код и наименование индикатора

достижения компетенции

Задачами изучения дисциплины являются:

- усвоение студентами знаний об основных подходах к описанию ионизованной среды, о возможностях и ограничениях этих подходов;
- отработка методов вычисления термодинамических и кинетических параметров ионизованной среды;
- выработка у студентов навыков по проведению качественных оценок при решении задач теоретического и экспериментального исследования плазмы.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Запланированные результаты обучения по дисциплине

современный математический аппарат при							
иоделей физических явлений, процессов и систем в							
профессиональной деятельности;							
Классификацию математических моделей							
плазменных процессов							
Основные этапы аналитического решения задач							
физики плазмы							
Основные принципы формулирования							
математических моделей плазменных процессов							
Применять методы теории размерностей и оценок по							
порядку величины							
Применять теорию дифференциальных уравнений в							
решении задач физики плазмы							
Формулировать и преобразовывать							
дифференциальные уравнения моделей физики							
плазмы							
Методами проведения оценок характерных							
параметров и свойств плазмы							
Приемами математических преобразований в							
решении задач физики плазмы							
Методами решения дифференциальных уравнений в							
решении задач физики плазмы							

ОПК-4: Способен применять основные концепции современного естествознания в междисциплинарных исследованиях;

ОПК-4.2: Использует базовые знания естественнонаучных дисциплин в профессиональной деятельности

Законы механики, статистической физики и электродинамики в общей формулировке и в применении к теории плазменных явлений. Принципы анализа с применением теории размерностей, проведения оценок на основе характерных масштабов задачи Математические основы методов теории возмущений и гармонического анализа

Применять законы сохранения при анализе задач физики плазмы.

Применять законы механики, статистической физики и электродинамики в решении задач физики плазмы. Анализировать задачи физики плазмы на предмет возможности применения подходов статистической физики

Техникой применения алгебраических выражений физических законов в приложении к задачам физики плазмы

Техникой применения дифференциальных уравнений физики в приложениии к задачам физики плазмы Техникой преобразования дифференциальных и интегродифференциальных уравнений физики

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		e
Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1 (36)	
занятия лекционного типа	0,5 (18)	
практические занятия	0,5 (18)	
Самостоятельная работа обучающихся:	1 (36)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционного типа		Занятия семин Семинары и/или Практические занятия		нарского типа Лабораторные работы и/или Практикумы		Самостоятельная работа, ак. час.	
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. Отдельные задачи физики плазмы									
	1. Основные понятия. Квазинейтральность. Дебаевское экранирование. Продольные электростатические волны.	2							
	2. Электромагнитная волна в бесстолкновительной плазме.			2					
	3. Движение заряженных частиц в электромагнитном поле	2							
	4. Вычисление пространственных, временных и безразмерных параметров плазмы для разных характерных случаев							4	
	5. Движение заряженной частицы в скрещенных электрическом и магнитном полях			2					
	6. Движение заряженной частицы в переменном электрическом поле							6	

				1		1
7. Магнитный момент заряженной частицы, движущейся в магнитном поле. Открытые плазменные		2				
ловушки. Конус потерь.		2				
2. Равновесная плазма			•			
1. Термодинамика равновесной плазмы	4					
2. Расчет состава равновесной частично ионизованной плазмы		3				
3. Расчет теплоемкости частично ионизованной плазмы молекулярного газа					6	
3. Кинетическая теория плазмы	<u> </u>	•	•	•		•
1. Теория столкновительных процессов	2					
2. Сечение упругого столкновения заряженных частиц.		3				
3. Обмен импульсом и энергией в столкновениях заряженных частиц.					6	
4. Уравнение Власова. Затухание Ландау.	2					
5. Коэффициенты переноса полностью ионизованной плазмы					2	
4. Плазмодинамика		•		•	•	•
1. Магнитная плазмодинамика. Многожидкостное, многокомпонентное, одножидкостное приближение.	1					
2. Уравнения электромагнитного поля в плазме.	1					
3. Плазменные двигатели. Магнитогидродинамические генераторы					8	
4. Альфеновские волны.		2				
5. Отрыв температуры электронов в слабоионизованной плазме.		2				
5. Методы исследования плазмы. Теомоядерный синтез.						

1. Методы экспериментального исследования плазмы	2				
2. Ленгмюровский зонд.		2			
3. Проблемы управляемого термоядерного синтеза	2				
4. Инерционный термоядерный синтез				4	
Всего		18		36	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Сковорода А. А. Магнитные ловушки для удержания плазмы: монография(Москва: Физматлит).
- 2. Морозов А. И. Введение в плазмодинамику(Москва: ФИЗМАТЛИТ).
- 3. Франк-Каменецкий Д. А. Лекции по физике плазмы: [учебное пособие] (Долгопрудный: Интеллект).
- 4. Биттенкорт Ж. А., Зеленый Л. М., Садовский А. М. Основы физики плазмы(Москва: Физматлит).
- 5. Чен Ф. Ф., Шевченко В. И. Введение в физику плазмы: перевод с английского (Москва: Мир).
- 6. Райзер Ю. П. Физика газового разряда: [монография](Долгопрудный: Интеллект).
- 7. Веденов А. А. Задачник по физике плазмы(Москва: Атомиздат).
- 8. Финников К. А. Физика плазмы. Термодинамика равновесной плазмы: метод. указ. для студ. спец. 070700 "Теплофизика"(Красноярск).
- 9. Пахомов Б. И. С/С++ и Borland С++ Builder для начинающих: учеб. пособие(Санкт-Петербург: БХВ-Петербург).
- 10. Сиб. федерал. ун-т Прикладная механика газа и плазмы: метод. указ. для практ. работ(Красноярск).
- 11. Голант В. Е., Жилинский А. П., Сахаров И. Е. Основы физики плазмы: учеб. пособие для студентов вузов(Санкт-Петербург: Лань).
- 12. Охорзин В. А. Прикладная математика в системе Mathcad: учеб. пособие (Москва: Лань).
- 13. Минаков А. В., Шебелева А. А., Шебелев А. В. Численные методы решения алгебраических и трансцендентных уравнений: учебнометодическое пособие [для бакалавров, напр.16.03.01 «Техническая физика»](Красноярск: СФУ).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

1. Для графического отображения результатов расчетов: Excel, Mathcad или Grapher.

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

1. Рабочей программой не предусмотрены.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Аудитория с магнитно-маркерной доской и оборудованием для демонстрации презентаций.